25 research outputs found

    Improving lifecycle query in integrated toolchains using linked data and MQTT-based data warehousing

    Full text link
    The development of increasingly complex IoT systems requires large engineering environments. These environments generally consist of tools from different vendors and are not necessarily integrated well with each other. In order to automate various analyses, queries across resources from multiple tools have to be executed in parallel to the engineering activities. In this paper, we identify the necessary requirements on such a query capability and evaluate different architectures according to these requirements. We propose an improved lifecycle query architecture, which builds upon the existing Tracked Resource Set (TRS) protocol, and complements it with the MQTT messaging protocol in order to allow the data in the warehouse to be kept updated in real-time. As part of the case study focusing on the development of an IoT automated warehouse, this architecture was implemented for a toolchain integrated using RESTful microservices and linked data.Comment: 12 pages, worksho

    A First Experimentation on High-Level Tooling Support upon Fractal

    No full text
    International audienceIn this abstract, we present a first experimentation on tooling support based on Fractal component model. The motivations which encouraged us were to provide an homogeneous design environment for the user to specify Fractal applications

    A First Experimentation on High-Level Tooling Support upon Fractal

    Get PDF
    International audienceIn this abstract, we present a first experimentation on tooling support based on Fractal component model. The motivations which encouraged us were to provide an homogeneous design environment for the user to specify Fractal applications

    Integration of Heterogeneous Context Resources in Ubiquitous Environments

    Get PDF
    International audienceUbiquitous environments provide families of context-aware applications that are capable of exploiting the user mobility as well as the device variability. Typically, these applications retrieve context information from local and remote providers and react accordingly to the detected variations. However, this must be done by considering the heterogeneity of devices and protocols found in ubiquitous environments. Unfortunately, although the context integration represents a keystone of context-aware systems, existing approaches in the literature fail to integrate the diversity of context sources in a standard and flexible way. Therefore, in this paper, we overcome this challenge by introducing resource-oriented bindings into the SCA (Service Component Architecture) model. This new kind of bindings follows the REpresentational State Transfer (REST) principles and leverages the provision of context as RESTful resources. A smart home scenario that highlights challenges in terms of integration in ubiquitous environments motivates the use of our approach

    Optimizing Sensor Network Reprogramming via In-situ Reconfigurable Components

    Get PDF
    International audienceWireless reprogramming of sensor nodes is a critical requirement in long-lived Wireless Sensor Networks (WSNs) for several concerns, such as fixing bugs, upgrading the operating system and applications, and adapting applications behavior according to the physical environment. In such resource-poor platforms, the ability to efficiently delimit and reconfigure the necessary portion of sensor software--instead of updating the full binary image--is of vital importance. However, most of existing approaches in this field have not been widely adopted to date due to the extensive use of WSN resources or lack of generality. In this article, we therefore consider WSN programming models and run-time reconfiguration models as two interrelated factors and we present an integrated approach for addressing efficient reprogramming in WSNs. The middleware solution we propose, RemoWare, is characterized by mitigating the cost of post-deployment software updates on sensor nodes via the notion of in-situ reconfigurability and providing a component-based programming abstraction to facilitate the development of dynamic WSN applications. Our evaluation results show that RemoWare imposes a very low energy overhead in code distribution and component reconfiguration, and consumes approximately 6% of the total code memory on a TelosB sensor platform

    A Three-Tier Approach for Composition of Real-Time Embedded Software Stacks

    Get PDF
    CORE A.International audienceMany component models and frameworks have been proposed to abstract and capture concerns from Real-Time and Embedded application domains, based on high-level component-based approaches. However, these approaches tend to propose their own fixed-set abstractions and ad-hoc runtime platforms, whereas the current trend emphasizes more flexible solutions, as embedded systems must constantly integrate new functionalities, while preserving performance. In this paper, we present a two-fold contribution addressing this statement. First, we propose to express these concerns in a decoupled way from the commonly accepted structural abstractions inherent to CBSE, and provide a framework to implement them in open and extensible runtime containers. Second, we propose a three-tier approach to composition where application, containers and the underlying operating system are designed using components. Supporting a homogeneous design space allows applying optimization techniques at these three abstraction layers showing that our approach does not impact on performance. In this paper, we focus our evaluation on concerns specific to the field of real-time audio and music applications

    Towards the Automated Qualification of Tool Chain Design

    Get PDF
    Abstract. The development of safety-critical embedded systems is supported by a number of development tools, which are increasingly integrated into automated tool chains. Safety standards require these tool chains to be qualified, which is costly and requires a large effort. To reduce cost and effort tool chains can be composed of pre-qualified tools and then themselves pre-qualified by identifying the parts of tool chain software that have an impact on safety more exactly. In this paper we propose the use of a modeling language to describe this tool chain composition. This allows us to reduce effort even further by automatically analyzing the tool chain model for safety issues. It also promises to reduce the effort and cost of later steps in the deployment of the tool chain by formalizing the communication of safety issues and automating the generation of code for tool chain software

    Constructing Domain-Specific Component Frameworks through Architecture Refinement

    Get PDF
    Acceptance rate: 38%International audienceRecently, a plethora of domain-specific component frameworks (DSCF) emerges. Although the current trend emphasizes generative programming methods as cornerstones of software development, they are commonly applied in a costly, ad-hoc fashion. However, we believe that DSCFs share the same subset of concepts and patterns. In this paper we propose two contributions to DSCF development. First, we propose DomainComponents --- a high-level abstraction to capture semantics of domain concepts provided by containers, and we identify patterns facilitating their implementation. Second, we develop a generic framework that automatically generates implementation of DomainComponents semantics, thus addressing domain-specific services with one unified approach. To evaluate benefits of our approach we have conducted several case studies that span different domain-specific challenges

    An Aspect-Oriented Framework for Weaving Domain-Specific Concerns into Component-Based Systems

    Get PDF
    International audienceSoftware components are used in various application domains, and many component models and frameworks have been proposed to fulfill domain-specific requirements. The general trend followed by these approaches is to provide ad-hoc models and tools for capturing these requirements and for implementing their support within dedicated runtime platforms, limited to features of the targeted domain. The challenge is then to propose more flexible solutions, where components reuse is domain agnostic. In this article, we present a framework supporting compositional construction and development of applications that must meet various extra-functional/domain-specific requirements. The key points of our contribution are: i) We target development of component-oriented applications where extra-functional requirements are expressed as annotations on the units of composition in the application's architecture. ii) These annotations are implemented as open and extensible component-based containers, achieving full separation of functional and extra-functional concerns. iii) Finally, the full machinery is implemented using the Aspect-Oriented Programming paradigm. We validate our approach with two case studies: the first is related to real-time and embedded applications, while the second refers to the distributed context-aware middleware domain

    Integration of Heterogeneous Context Resources in Ubiquitous Environments

    Get PDF
    International audienceUbiquitous environments provide families of context-aware applications that are capable of exploiting the user mobility as well as the device variability. Typically, these applications retrieve context information from local and remote providers and react accordingly to the detected variations. However, this must be done by considering the heterogeneity of devices and protocols found in ubiquitous environments. Unfortunately, although the context integration represents a keystone of context-aware systems, existing approaches in the literature fail to integrate the diversity of context sources in a standard and flexible way. Therefore, in this paper, we overcome this challenge by introducing resource-oriented bindings into the SCA (Service Component Architecture) model. This new kind of bindings follows the REpresentational State Transfer (REST) principles and leverages the provision of context as RESTful resources. A smart home scenario that highlights challenges in terms of integration in ubiquitous environments motivates the use of our approach
    corecore